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Aversion of the statistical method of averaging the system of equilibrium equations for an elastoplastic two-component composite 
material in order to predict its macroscopic non-linear hardening is proposed. Thisversion, unlike the averaging method developed 
previously in [l, 21, enables one to model and estimate the degree of connectedness of the matrix and the inclusions and to take 
into account the non-uniformity of the distribution and the development of plastic deformations Macroscopic governing equations 
are constructed which describe the non-linear hardening of a composite material outside the elasticity limit, and its effective 
characteristics are calculated. 0 1998 Elsevier Science Ltd. All rights reserved. 

Suppose an isotropic two-component composite material, the elastoplastic matrix and elastic spherical 
inclusions of which are combined with ideal adhesion, occupies a volume V bounded by a surface S. 
The mutual arrangement of the components in space is described by an indicator random isotropic 
function of the coordinates x(r) (equal to zero at a set of points of the matrix Vr and equal to unity at 
a set of points of the inclusions V,), by means of which the local Hooke’s law for the composite material 
considered can be written in the form 

si#) = 21.4Ceii(r)- e:(r))+ 2[pl4r)e&) 

okk (r) = (34 + 3[0W)EuCr) (1) 

Here oii, q, e$ are: the components of the stress, total and plastic strain tensors respectively, p,, J& 
(s = 1,2) are the shear moduli and the bulk moduli of the materials of the components and v] = f2 - fi. 
The plastic strains satisfy the incompressibility condition &(r) = 0. 

The function x(r), the stresses, and the total and plastic strains are assumed to be random statistical 
homogeneous and ergodic fields, and their mathematical expectations are replaced by average values 
over the total volume V and over the volumes of the components V, [3] 

(f(r)), = + 1 f (r)dr 
s 4 

The angle brackets denote the operation of averaging. 
To determine the, effective elasticity moduli of the composite material and to calculate the macroscopic 

residual strains, measured after the loads are removed from its surface, we must average the local 
equations (1) over the total volume V 

hj > = WI (eij - e6) + Wlq(eti )2 

(CJkk) =3&@,)+3[Klc,(a,), (2) 

Here c2 = V2V’ is the volume content of the inclusions. The expressions on the right-hand sides of (2) 
show that to establish the effective Hooke’s law we need to express the quantities (Q2 in terms of the 
macroscopic deformations (qj) using the well-known relation [2] 
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(E& = (Q) + c;‘(x’&;) (3) 

The fluctuations of quantities in the volume V are denoted by primes. 
The fluctuations in the stress, total and plastic strain tensors can be found from Eqs (1) and (2) 

si;.W = 2CL,(eii(r)-e~(r))‘+2[~l(x(r)eii(r)-cz(eii)z) 

0; W = 3&E’, W + 3[Kl(xWEu (r) - q(Ekk h 1 

The strained state of an elastic isolated inclusion when there are no plastic strains in the matrix is 
homogeneous and equal to its mean value (a& [3]. When the number of inclusions increases and plastic 
strains appear in the volume Vr the homogeneity of the strain field in the volume V, is disturbed. 
Nevertheless, for a statistically homogeneous distribution of microspheres in the matrix their effect on 
one another balances out, and the strained state inside V, becomes close to homogeneous, but its value 
will, naturally, differ from the mean value. If we replace the tensor x(r)Gj(r) by the quantity x(r){ -)2 
approximately in the relations for the stress fluctuations, this assumption, depending on the sign of “r ~1 
and [KJ, reduces or increases the average density of the elastic potential in the volume V, which can be 
compensated by introducing an unknown parameter 

The relations for the stress fluctuations will then take the form 

s&l = WI (e+) - $@)I + 2[~lx(r)x(eti jz 

bti W = 34~ (r) + 3[04rht(~~ h (4) 

The coefficient x, characterizing the difference between the strained state of the inclusion and its 
mathematical expectation, describes the interaction of the inclusions with one another (the connected- 
ness of the components). 

To calculate the moments (~‘a’$ we must supplement the following equilibrium equations to relations (4) 

oip,p(r) = 0 (5) 

and the Cauchy formulae 

2Eij(r) = Uij(r) + Uj,i(r) 
(6) 

which relate the components of the strain tensor with the components of the displacement vector r+(r). 
The system of equations (4)-(6) are closed with respect to the stresses oii, the total strains 9 and the 
displacements ub and the plastic strains E$ are parameters (it is assumed that the loading history is known 
in each specific problem). The conditions for all the quantities on the surface of the volume V to be 
homogeneous are the boundary conditions for the system obtained, namely 

Using Green’s tensor G&r) we can replace the system of equations (4)-(6) by the following system 
of integral equations [2] 

Multiplying both sides of Eqs (7) by x’(r) and averaging over the total volume Vwe obtain 

o( = 2(4+)x 
,p,= x 3K, - 2cL, 

I 
15(1- v,) 15(1-v,)’ “I = 6K, +2p1 

(8) 
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Here Qj are the components of the tensor characterizing the inhomogeneous distribution and the 
development of structural plastic strains in the matrix, and cl = Vir’ is the volume content of the matrix. 

Substituting (3) and (8) into (2) and separating the deviator and volume parts we obtain the effective 
Hooke’s law for the composite material in question 

CL* +, I+ ( cz(m-1) 
l+c,a,(112-1) 

c2(q-1) 
1 + C,Y, (4 - 1) 

&+ q’K2, y, =(l+vl)x 
PI 4 3(1-v,) 

Here p.*, K* are the effective shear and bulk moduli of the composite material, and E$ are the residual 
strains, which are measured after the loads are removed from the surface of the volume I’. The 
connection between the residual and plastic strains is found from relations (2), (3) and (8) if we put 
(oi) = 0, (qj) = E$ in them 

(eb)= m*(ei -aii)+aii, app = q* / (q* - l)~*pp (10) 

m* = p* / p,; q* = K’J K,; ati =a9 -KSijap,,. 

The expressions for the effective elasticity moduli p* and K* depend very much on the connectivity 
parameter x. When x = 1 we obtain the Kerner model for a single microsphere. In addition, depending 
on the sign of the quantities [cl] and [Kj this model is identical either with the upper or lower 
Hashin-Shtrikman boundaries [3]. The limiting value of x = 0 corresponds to the maximum connected- 
ness of the components for which the effective moduli are identical with the mean values (the upper 
Voight limit): p* = l.tlcl + p2c2, K* = Kici + Kgr. 

Relations (9) and (10) show that despite the plastic incompressibility of the matrix material, the 
composite material. as a whole acquires a qualitatively new property, namely, a certain irreversible 
compressibility, wh.ich does not have constituent components separately. This compressibility is due to 
the different values of the bulk moduli Ki and K2 and only disappears when Ki = K2. 

Suppose the plastic properties of the matrix material are specified by the Mises yield surface 
s&)x6(r) = k2, r E VI and associated plastic flow law 

(11) 

Here k is the yield point of the matrix material for shear and $ are the plastic strain rates. 
In order to use tlhe above averaging method further it is necessary to linearize the non-linear local 

equation (11) by making certain assumptions. Following the procedure described previously [4], we will 
neglect fluctuations of the invariant of the tensor of the plastic strain rates within the volume of the 
matrix Vi. Equation (11) then takes the form 

k 
sii(r)=-i!, rtzV,, 

A” 
h=Jm (12) 

It was shown in [4] that the above assumption increases the average energy dissipation density and, 
for certain types of structures, leads to upper limits on the effective constants of the composite medium. 

Taking into account the fact that under active loading conditions in the composite material outside 
the elasticity limit, the quantity A is always positive, we make the following replacement of the variable 



1016 I. S. Makarova and L. A. Sarayev 

t: dz = A&. Relation (12) then takes the form 

sii =kde[ldT 

Substituting Hooke’s law for the material of the first component into Eq. (13), we obtain 

kde& ldT=2p,(eii(r)-e;(r)), rE V, 

Multiplying both sides of Eq. (14) by the quantity 

-2p,c;‘Gik,u(r - rl)x’(r)dr, 

(13) 

(14) 

integrating them in the region Vwith respect to the variables r1 and r and using the properties of the 
second derivative of Green’s tensor, we obtain [2] 

Ma, 1 h = 2PL,y, ((ati )* - (aii >) + 2[t.Wf, (eti )2 + $[Klc, (a, - 3P, )(app j2 

Separating the deviator part and the volume part and also taking Eqs (7) and (9) and relation (3) 
into account, we obtain 

da.. 
mck’I - ~ - {(si ) + 2p*5+ - W*!5 + Y I )aii 

PP 
)-3K*wE’ 

PP (1% 

5 = clal(m - 1X1 - yM1 + clal(m - 1)) 

w = l/(1 + c1y,(q - 1)) 

Since at any point of the composite material, both for active loading and unloading, the stresses s&j 
do not exceed the amounts kde$(r)/dz, we have the following inequalities 

(si), d kd(e[), /h (s = 1,2) 

from which the following upper limit of the macroscopic associated flow law follows 

(Q) = kc;‘d(e{) / h (16) 

Eliminating the components of the tensor (e/), uii from relations (9), (15) and (16), we obtain 
the following effective governing equations of the composite material outside the elasticity 
limit 

4sij > de,; d2e? 

p’ dT +P&)=q1~+q*(kt2 

Here 

po=2~*cI({+yl)k-‘, p1 =m*c,+{(m*-1) 

q1 = 2p*(y,m* +Q, q2 = km*2. no = 3K2wq’ 
(4. - l)(qw - q*) 

k4.l 
n1 = (a, -38,)(q* -l)(qw-q’) 

(17) 
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The equations of non-linear hardening of the composite material outside the elasticity limit (17) 
contain the unknown connectivity parameter of the components x. It can be calculated from the 
equations of elastic ;strains of the medium (9) if we take into account the well-known experimental value 
of one of the effectlive elasticity moduli of the composite material, for example, Young’s modulus 

9K’P’ = E’ 

3K’ + 2p* =xP 

The value of x thus obtained can henceforth be used in the non-linear equations (17), since for small 
strains the structure of the composite material is not changed to any considerable extent. 

The equations of non-linear hardening (17) must be supplemented by the equations of the initial 
and limit yield surfaces. Since the inclusions are always in an elastic state and are stress concentrators, 
we can assume that plastic flow begins in the matrix in the region of the surface of the inclusions, 
when the deviator components of the stress tensor in the region V, reach the yield point of the 
matrix: (@&& = k2 or taking Hooke’s law into account 4pz(e&(e& = kz. Hence, substituting 
expressions (e& = (l+cicrr(m - l))-‘( ..) et, an using the effective Hooke’s law (9) we obtain the d 
initial macroscopic surface and yield point 

(sii )(sii ) = ki2, k; = km-*(1 + (m - l)(c,cr, + q)) (19) 

The limit yield surface of the composite material corresponds to plastic strains which considerably 
exceed the elastic strains, and hence we can neglect the elastic strains when determining the maximum 
effective yield point. Obtaining the limit yield surface of the composite then reduces to solving the rigid- 
plastic problem for a composite material with absolutely rigid inclusions. The relation between the 
stresses and strain rates in this case is given by the equation [4] 

sii(r)=kA-‘kii(r)+(sij)*x(r) (20) 

The macroscopic stresses are obtained after averaging (20) over the total volume V 

(~~)=kA-‘(i~)+c~(s~)~ (21) 

The fluctuations of the stress-strain state, taking the connectivity parameter x into account, are related 
by the equation 

~6 (r) = iii(r)+ x’(r)X(sti)2 

Applying the above procedure for determining the effective properties of the composite material 
(5)-(8) together wi1.h (21) to Eq. (22), we obtain 

(s,.)=k5-cl(5-2X)(p,,) 
rl A 2cix (I (23) 

The quantity A is found from the well-known relation for the average energy dissipation density [4] 

(D)=(sii)($)=kA (24) 
Eliminating A from relations (23) and (24) we obtain the macroscopic limit yield surface and the 

corresponding effec:tive yield point 

(25) 

In particular, when x = 1, Eqs (25) are identical with the analogous results obtained in [4]. 
We will use (17), (19) and (25) to calculate the non-linear hardening of a composite material in the 

case of simple uniaxial loading (oi # 0, cr2 = o3 = 0). We have for the principal strain values ET + 0, 
&z* = &j. In the case of simple loading the residual strains obey the law 
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E; = EPr, EP = const (26) 

Relations (17) then take the form 

(27) 

Eliminating CQ from (27) we obtain a second-order differential equation for E; with the following 
boundary conditions 

d2e; dc; 
-+a, ~+uo&; 
dr2 = fo 

m9=Q q(O)=a,, q(oo)=a, 

Here 

al = b, + 2b2, a0 = 2pono 
2/v, + q2 

b, = q1 wo + PO? 
2m+ q2 ’ 

b2 = 
2PPl + q2 

=o 0 f. =-T&,r+(bl -b,)ep, <To =mk;, 6, =J?Tzk: 

Solving (27) and (28) we obtain 

cm 

(29) 

Here 

5,(f) = (2noq(r* - rr))-‘(oono +n,o,r,)exp(r*r) 

V*(r) = 2(no + w)L(~) 

and r+ = -a42&4((a1/2)2 - a0 ) are the roots of the characteristic equation of differential equation (28). 
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Fig. 1. Fig. 2. 
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Eliminating z fro.m (29) we obtain the following relation between the transverse and longitudinal 
residual strains 

E; = -V*(&;)&; (30) 

and the law of uniadal non-linear hardening of the composite material outside the elasticity limit 

6, = E*(&;)&; (31) 

Here 

<*(E;>=(%nl(r* -rr))-‘(oo~ +qo,r,)exp 

W*(E;) = 2(5 +v&(Ei) 

(~*(a;) is the elastoplastic Poisson’s ratio andE*(Ey) is the modulus of tensile (compressive) plasticity). 
Figure 1 compares the theoretical diagrams of uniaxial tension of samples of a composite material 

based on a copper matrix and a baked framework of tungsten powder (the dashed curve), calculated 
from (9), (18), (30) and (31), with experimental data given in [S] (the continuous curve). The calculated 
values of the mechanical characteristics are as follows: El = 1.12 x 10’ MPa, Ez = 3.6 x 105 MPa, 
vt = 0.369, v2 = 0.2, c2 
x = 1.406. 

= 0.66, k = 250 MPa, Ef, = 2.46 x 10’ MPa, and the calculated value 

From (9), (18), (30) and (31) we also calculated the diagram of uniaxial tension for an epoxy matrix, 
hardened with glass microspheres. The tensile diagram of the material of the matrix was approximated 
by a piecewise diagram of an ideally elastoplastic solid. The calculated values of the quantities were as 
follows: El = 0.307 x lo4 MPa, E2 = 7.35 x lo4 MPa, vl = 0.45, v2 = 0.21, c2 = 0.76, k = 69 MPa, 

Eafi = 0.613 x lo4 MPa, and the calculated value x = 0.659. 
rgure 2 compares the theoretical diagram (the dashed curve) with the experimental diagram (the 

continuous curve), drawn using the data in [6]. 
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